Journal of Functional Biomaterials (Jan 2012)

Biomechanical Conditioning Enhanced Matrix Synthesis in Nucleus Pulposus Cells Cultured in Agarose Constructs with TGFβ

  • Tina T. Chowdhury,
  • Dan L. Bader,
  • Reshma K. Tilwani

DOI
https://doi.org/10.3390/jfb3010023
Journal volume & issue
Vol. 3, no. 1
pp. 23 – 36

Abstract

Read online

Biomechanical signals play an important role in normal disc metabolism and pathology. For instance, nucleus pulposus (NP) cells will regulate metabolic activities and maintain a balance between the anabolic and catabolic cascades. The former involves factors such as transforming growth factor-β (TGFβ) and mechanical stimuli, both of which are known to regulate matrix production through autocrine and paracrine mechanisms. The present study examined the combined effect of TGFβ and mechanical loading on anabolic activities in NP cells cultured in agarose constructs. Stimulation with TGFβ and dynamic compression reduced nitrite release and increased matrix synthesis and gene expression of aggrecan and collagen type II. The findings from this work has the potential for developing regenerative treatment strategies which could either slow down or stop the degenerative process and/or promote healing mechanisms in the intervertebral disc.

Keywords