A lipid transfer protein ensures nematode cuticular impermeability
Ferdinand Ngale Njume,
Adria Razzauti,
Miguel Soler,
Veronika Perschin,
Gholamreza Fazeli,
Axelle Bourez,
Cedric Delporte,
Stephen M. Ghogomu,
Philippe Poelvoorde,
Simon Pichard,
Catherine Birck,
Arnaud Poterszman,
Jacob Souopgui,
Pierre Van Antwerpen,
Christian Stigloher,
Luc Vanhamme,
Patrick Laurent
Affiliations
Ferdinand Ngale Njume
Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium; Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon; Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
Adria Razzauti
Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
Miguel Soler
Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
Veronika Perschin
Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
Gholamreza Fazeli
Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
Axelle Bourez
RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
Cedric Delporte
RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
Stephen M. Ghogomu
Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
Philippe Poelvoorde
Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
Simon Pichard
Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
Catherine Birck
Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
Arnaud Poterszman
Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
Jacob Souopgui
Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
Pierre Van Antwerpen
RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
Christian Stigloher
Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
Luc Vanhamme
Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
Patrick Laurent
Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium; Corresponding author
Summary: The cuticle of C. elegans is impermeable to chemicals, toxins, and pathogens. However, increased permeability is a desirable phenotype because it facilitates chemical uptake. Surface lipids contribute to the permeability barrier. Here, we identify the lipid transfer protein GMAP-1 as a critical element setting the permeability of the C. elegans cuticle. A gmap-1 deletion mutant increases cuticular permeability to sodium azide, levamisole, Hoechst, and DiI. Expressing GMAP-1 in the hypodermis or transiently in the adults is sufficient to rescue this gmap-1 permeability phenotype. GMAP-1 protein is secreted from the hypodermis to the aqueous fluid filling the space between collagen fibers of the cuticle. In vitro, GMAP-1 protein binds phosphatidylserine and phosphatidylcholine while in vivo, GMAP-1 sets the surface lipid composition and organization. Altogether, our results suggest GMAP-1 secreted by hypodermis shuttles lipids to the surface to form the permeability barrier of C. elegans.