The Astrophysical Journal Letters (Jan 2023)

The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background

  • Gabriella Agazie,
  • Akash Anumarlapudi,
  • Anne M. Archibald,
  • Paul T. Baker,
  • Bence Bécsy,
  • Laura Blecha,
  • Alexander Bonilla,
  • Adam Brazier,
  • Paul R. Brook,
  • Sarah Burke-Spolaor,
  • Rand Burnette,
  • Robin Case,
  • J. Andrew Casey-Clyde,
  • Maria Charisi,
  • Shami Chatterjee,
  • Katerina Chatziioannou,
  • Belinda D. Cheeseboro,
  • Siyuan Chen,
  • Tyler Cohen,
  • James M. Cordes,
  • Neil J. Cornish,
  • Fronefield Crawford,
  • H. Thankful Cromartie,
  • Kathryn Crowter,
  • Curt J. Cutler,
  • Daniel J. D’Orazio,
  • Megan E. DeCesar,
  • Dallas DeGan,
  • Paul B. Demorest,
  • Heling Deng,
  • Timothy Dolch,
  • Brendan Drachler,
  • Elizabeth C. Ferrara,
  • William Fiore,
  • Emmanuel Fonseca,
  • Gabriel E. Freedman,
  • Emiko Gardiner,
  • Nate Garver-Daniels,
  • Peter A. Gentile,
  • Kyle A. Gersbach,
  • Joseph Glaser,
  • Deborah C. Good,
  • Kayhan Gültekin,
  • Jeffrey S. Hazboun,
  • Sophie Hourihane,
  • Kristina Islo,
  • Ross J. Jennings,
  • Aaron Johnson,
  • Megan L. Jones,
  • Andrew R. Kaiser,
  • David L. Kaplan,
  • Luke Zoltan Kelley,
  • Matthew Kerr,
  • Joey S. Key,
  • Nima Laal,
  • Michael T. Lam,
  • William G. Lamb,
  • T. Joseph W. Lazio,
  • Natalia Lewandowska,
  • Tyson B. Littenberg,
  • Tingting Liu,
  • Jing Luo,
  • Ryan S. Lynch,
  • Chung-Pei Ma,
  • Dustin R. Madison,
  • Alexander McEwen,
  • James W. McKee,
  • Maura A. McLaughlin,
  • Natasha McMann,
  • Bradley W. Meyers,
  • Patrick M. Meyers,
  • Chiara M. F. Mingarelli,
  • Andrea Mitridate,
  • Priyamvada Natarajan,
  • Cherry Ng,
  • David J. Nice,
  • Stella Koch Ocker,
  • Ken D. Olum,
  • Timothy T. Pennucci,
  • Benetge B. P. Perera,
  • Polina Petrov,
  • Nihan S. Pol,
  • Henri A. Radovan,
  • Scott M. Ransom,
  • Paul S. Ray,
  • Joseph D. Romano,
  • Jessie C. Runnoe,
  • Shashwat C. Sardesai,
  • Ann Schmiedekamp,
  • Carl Schmiedekamp,
  • Kai Schmitz,
  • Levi Schult,
  • Brent J. Shapiro-Albert,
  • Xavier Siemens,
  • Joseph Simon,
  • Magdalena S. Siwek,
  • Ingrid H. Stairs,
  • Daniel R. Stinebring,
  • Kevin Stovall,
  • Jerry P. Sun,
  • Abhimanyu Susobhanan,
  • Joseph K. Swiggum,
  • Jacob Taylor,
  • Stephen R. Taylor,
  • Jacob E. Turner,
  • Caner Unal,
  • Michele Vallisneri,
  • Sarah J. Vigeland,
  • Jeremy M. Wachter,
  • Haley M. Wahl,
  • Qiaohong Wang,
  • Caitlin A. Witt,
  • David Wright,
  • Olivia Young,
  • The NANOGrav Collaboration

DOI
https://doi.org/10.3847/2041-8213/ace18b
Journal volume & issue
Vol. 952, no. 2
p. L37

Abstract

Read online

The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.

Keywords