Remote Sensing (Jan 2023)

Evaluating the Value of CrIS Shortwave-Infrared Channels in Atmospheric-Sounding Retrievals

  • Chris D. Barnet,
  • Nadia Smith,
  • Kayo Ide,
  • Kevin Garrett,
  • Erin Jones

DOI
https://doi.org/10.3390/rs15030547
Journal volume & issue
Vol. 15, no. 3
p. 547

Abstract

Read online

The Cross-track Infrared Sounder (CrIS), in low Earth orbit since 2011, makes measurements of the top of atmosphere radiance for input into data assimilation (DA) systems as well as the retrieval of geophysical state variables. CrIS measurements have 2211 narrow infrared channels ranging between 650 and 2550 cm−1 (~3.9–15.4 μm) and capture the variation in profiles of atmospheric temperature, water vapor, and numerous trace gas species. DA systems derive atmospheric temperature by assimilating CO2-sensitive channels in the CrIS longwave (LW) band (650–1095 cm−1). Here, we investigate if CO2-sensitive channels in the shortwave (SW) band (2155–2550 cm−1) can similarly be applied. We first evaluated the information content of the CrIS bands followed by an assessment of the performance degradation of retrievals due to the loss of individual CrIS bands. We found that temperature profile retrievals derived from the CrIS SW band were statistically both well-behaved and as accurate as a retrieval utilizing the CrIS LW band. The one caveat, however, is that the higher CrIS instrument noise in the SW band limited its performance under certain conditions. We conclude with a discussion on the implications our results have for channel selection in retrieval and DA systems as well as the design of future space instruments.

Keywords