Zoonoses (Feb 2023)
Syncytial and Congregative Effects of Dengue and Zika Viruses on the Aedes Albopictus Cell Line Differ among Viral Strains
Abstract
Dengue viruses (DENV) and Zika virus (ZIKV) are transmitted among humans, or from non-human primates to humans, through mosquito bites. The interaction of the virus with mosquito cells is a key step in the viral life cycle. Therefore, the objective of this study was to determine how DENV and ZIKV interact with mosquito cells. Immunofluorescence assays and a direct visualization system were combined to monitor the syncytial or congregative effects of DENV and ZIKV strains on C6/36 cells. We examined the cytopathic effects of the strains on C6/36 mosquito cells, a widely used laboratory model for studying infection with these viruses. Our results indicated that all strains of DENV-1 and DENV-2, most DENV-4 strains, and some DENV-3 strains caused syncytial effects on C6/36 cells, whereas some DENV-3 and DENV-4 strains, and all tested ZIKV strains, caused cell congregation after infection but no cell fusion. In addition, we detected a range of environmental pH values from 6.0 to 8.0 supporting virus-induced cell fusion. The optimal pH condition was 7.5, at which viral production was also highest. Furthermore, the UV-inactivated virus did not cause cell fusion, thus suggesting that viral replication may be required for DENV’s syncytial effects on C6/36 cells. Syncytial and congregative effects of DENV and ZIKV on Aedes albopictus cells differ among viral strains. Syncytial effects of DENV on C6/36 are important for viral replication.