Ecology and Society (Dec 2023)
Trade-offs in adapting to changes in climate, land use, and water availability in California
Abstract
Changes in land use and land cover, water systems, and climate are inextricably linked, and their combined stresses have had severe impacts in many regions worldwide. Integrated adaptation planning can support adaptive capacity by helping institutions manage land and water resources at regional to local scales. Linkages between these stressors mean that planners are often faced with potential trade-offs, and how to couple social and environmental sustainability remains a key question. We explore these questions in California’s Central Coast, a region that is already experiencing serious water shortages, housing shortages, rapid expansion of perennial agriculture, and severe droughts that are projected to become worse with climate change. Linked models of land use change (the Land Use and Carbon + Water Simulator [LUCAS-W]), water resources (LUCAS-W), and climate (the Basin Characterization Model [BCM]) produced forecasts of exposure to regional changes at 270-m resolution. We worked with regional stakeholders to develop a matrix of nine vulnerability measures that assessed key sensitivities to these changes. Each vulnerability measure combined one of the three exposure projections with spatial datasets representing one of three sensitivity communities (agricultural, domestic, or ecological). We assessed how five scenarios of land-use and water management strategies under consideration by regional planners could provide institutional, top-down adaptive capacity, and whether there were trade-offs in sustainable development goals for these communities. We found that specific land and water management strategies could greatly reduce regional vulnerability, particularly programs to cap water extractions to sustainable levels. The most dramatic trade-off was between the strategy of water demand caps that increased risk of habitat loss and ecosystem preservation that increased water vulnerability. However, trade-offs were usually limited and spatially localized, suggesting local tailoring of the strategies we assessed could reduce them. Trade-offs were more frequent across exposure classes (land use vs. water vs. climate changes) rather than sensitivity classes (agricultural vs. domestic vs. ecological communities), suggesting win-win opportunities for natural resource management. Our vulnerability maps can inform prioritization efforts for local adaptation planning.
Keywords