Micromachines (Jul 2018)

Ag-Sensitized Yb3+ Emission in Glass-Ceramics

  • Francesco Enrichi,
  • Elti Cattaruzza,
  • Maurizio Ferrari,
  • Francesco Gonella,
  • Riccardo Ottini,
  • Pietro Riello,
  • Giancarlo C. Righini,
  • Trave Enrico,
  • Alberto Vomiero,
  • Lidia Zur

DOI
https://doi.org/10.3390/mi9080380
Journal volume & issue
Vol. 9, no. 8
p. 380

Abstract

Read online

Rare earth doped materials play a very important role in the development of many photonic devices, such as optical amplifiers and lasers, frequency converters, solar concentrators, up to quantum information storage devices. Among the rare earth ions, ytterbium is certainly one of the most frequently investigated and employed. The absorption and emission properties of Yb3+ ions are related to transitions between the two energy levels 2F7/2 (ground state) and 2F5/2 (excited state), involving photon energies around 1.26 eV (980 nm). Therefore, Yb3+ cannot directly absorb UV or visible light, and it is often used in combination with other rare earth ions like Pr3+, Tm3+, and Tb3+, which act as energy transfer centres. Nevertheless, even in those co-doped materials, the absorption bandwidth can be limited, and the cross section is small. In this paper, we report a broadband and efficient energy transfer process between Ag dimers/multimers and Yb3+ ions, which results in a strong PL emission around 980 nm under UV light excitation. Silica-zirconia (70% SiO2-30% ZrO2) glass-ceramic films doped by 4 mol.% Yb3+ ions and an additional 5 mol.% of Na2O were prepared by sol-gel synthesis followed by a thermal annealing at 1000 °C. Ag introduction was then obtained by ion-exchange in a molten salt bath and the samples were subsequently annealed in air at 430 °C to induce the migration and aggregation of the metal. The structural, compositional, and optical properties were investigated, providing evidence for efficient broadband sensitization of the rare earth ions by energy transfer from Ag dimers/multimers, which could have important applications in different fields, such as PV solar cells and light-emitting near-infrared (NIR) devices.

Keywords