Scientific Reports (Oct 2023)
Breast density analysis of digital breast tomosynthesis
Abstract
Abstract Mammography shifted to digital breast tomosynthesis (DBT) in the US. An automated percentage of breast density (PD) technique designed for two-dimensional (2D) applications was evaluated with DBT using several breast cancer risk prediction measures: normalized-volumetric; dense volume; applied to the volume slices and averaged (slice-mean); and applied to synthetic 2D images. Volumetric measures were derived theoretically. PD was modeled as a function of compressed breast thickness (CBT). The mean and standard deviation of the pixel values were investigated. A matched case–control (CC) study (n = 426 pairs) was evaluated. Odd ratios (ORs) were estimated with 95% confidence intervals. ORs were significant for PD: identical for volumetric and slice-mean measures [OR = 1.43 (1.18, 1.72)] and [OR = 1.44 (1.18, 1.75)] for synthetic images. A 2nd degree polynomial (concave-down) was used to model PD as a function of CBT: location of the maximum PD value was similar across CCs, occurring at 0.41 × CBT, and PD was significant [OR = 1.47 (1.21, 1.78)]. The means from the volume and synthetic images were also significant [ORs ~ 1.31 (1.09, 1.57)]. An alternative standardized 2D synthetic image was constructed, where each pixel value represents the percentage of breast density above its location. Several measures were significant and an alternative method for constructing a standardized 2D synthetic image was produced.