IEEE Access (Jan 2021)
Robust Motion Control of Nonlinear Quadrotor Model With Wind Disturbance Observer
Abstract
This paper focuses on robust wind disturbance rejection for nonlinear quadrotor models. By leveraging on nonlinear unknown observer theory, it proposes a nonlinear dynamic filter that, using sensors already on-board the aircraft, can estimate in real-time wind gust signals in the three dimensions. The wind disturbance is then treated as input to the PD controller for a quick and robust flight pathway in presence of disturbances. With this scheme, the wind disturbance can be precisely estimated online and compensated in real-time. Hence, the quadrotor can successfully reach its desired attitude and position. To show the effective and desired performance of the method, simulation results are presented in Matlab/Simulink and ROS-enabled Gazebo platform.
Keywords