Mathematical Biosciences and Engineering (Aug 2022)

A novel dictionary learning-based approach for Ultrasound Elastography denoising

  • Yihua Song ,
  • Chen Ge,
  • Ningning Song,
  • Meili Deng

DOI
https://doi.org/10.3934/mbe.2022537
Journal volume & issue
Vol. 19, no. 11
pp. 11533 – 11543

Abstract

Read online

Ultrasound Elastography is a late-model Ultrasound imaging technique mainly used to diagnose tumors and diffusion diseases that can't be detected by traditional Ultrasound imaging. However, artifact noise, speckle noise, low contrast and low signal-to-noise ratio in images make disease diagnosing a challenging task. Medical images denoising, as the first step in the follow-up processing of medical images, has been concerned by many people. With the widespread use of deep learning technique in the research field, dictionary learning method are once again receiving attention. Dictionary learning, as a traditional machine learning method, requires less sample size, has high training efficiency, and can describe images well. In this work, we present a novel strategy based on K-clustering with singular value decomposition (K-SVD) and principal component analysis (PCA) to reduce noise in Ultrasound Elastography images. At this stage of dictionary training, we implement a PCA method to transform the way dictionary atoms are updated in K-SVD. Finally, we reconstructed the image based on the dictionary atoms and sparse coefficients to obtain the denoised image. We applied the presented method on datasets of clinical Ultrasound Elastography images of lung cancer from Nanjing First Hospital, and compared the results of the presented method and the original method. The experimental results of subjective and objective evaluation demonstrated that presented approach reached a satisfactory denoising effect and this research provides a new technical reference for computer aided diagnosis.

Keywords