Aerospace (May 2024)
Orbital Pursuit–Evasion–Defense Linear-Quadratic Differential Game
Abstract
To find superior guidance strategies for preventing possible interception threats from space debris, out-of-control satellites, etc., this paper investigates an orbital pursuit–evasion–defense game problem with three players called the pursuer, the evader, and the defender, respectively. In this game, the pursuer aims to intercept the evader, while the evader tries to escape the pursuer. A defender accompanying the evader can protect the evader by actively intercepting the pursuer. For such a game, a linear-quadratic duration-adaptive (LQDA) strategy is first proposed as a basic strategy for the three players. Later, an advanced pursuit strategy is designed for the pursuer to evade the defender when they are chasing the evader. Meanwhile, a cooperative evasion–defense strategy is proposed for the evader and the defender to build their cooperation. Simulations determined that the proposed LQDA strategy has higher interception accuracy than the classic LQ strategy. Meanwhile, the proposed two-sided pursuit strategy can improve the interception performance of the pursuer against a non-cooperative defender. But if the evader and defender employ the proposed cooperation strategy, the pursuer’s interception will be much more difficult.
Keywords