Semina: Ciências Agrárias (Aug 2017)

Earthworms and root-knot nematodes: effect on soil biological activity and tomato growth

  • Wilian Carlo Demetrio,
  • Jair Alves Dionísio,
  • Arlei Maceda

DOI
https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2449
Journal volume & issue
Vol. 38, no. 4Supl1
pp. 2449 – 2462

Abstract

Read online

Earthworms are a representative soil invertebrate, and their living habits are known to influence a large diversity of organisms. The objective of this study was to evaluate the ability of Amynthas spp. to change the biological attributes of soil, and its potential to reduce infection by root-knot nematodes on tomato crop. The study was conducted in the greenhouse of the Diagnostic Center Marcos Enrietti, Federal University of Paraná, Brazil. The treatments earthworms at the following densities: control (absence of earthworms), two, four, six, and eight, which were inoculated into different pots, with five replicates per group. In each pot, a single tomato plant (Solanum lycopersicum) was used, and a suspension of Meloidogyne javanica containing 3000 eggs and/or juveniles was added 14 days after seeding. During the experiment, edaphic respiration was evaluated at 96-h intervals. After 91 days, soil microbial biomass carbon (MBC), microbial soil respiration (MSR), the metabolic quotient (qCO2), dry mass of roots (DMR), dry mass of plants (DMP), and the number of root galls were determined per plant. We observed that inoculation with higher earthworm densities increased the MBC. Furthermore, the lowest earthworm density (two animals) resulted in a MBC that was 75% higher than that of the control treatment (earthworms absent). There was a positive correlation between MBC and DMP, and a negative correlation between MBC and qCO2. The DMR was not influenced by inoculation with earthworms. A linear increase in DMP was observed with earthworms; however, gall formations on the tomato root were not suppressed.

Keywords