Molecules (May 2020)
Indirect Competitive Determination of Tetracycline Residue in Honey Using an Ultrasensitive Gold-Nanoparticle-Linked Aptamer Assay
Abstract
Tetracycline residue in honey has become an increasingly important food safety problem. In this work, an ultrasensitive gold nanoparticles (AuNPs)-linked aptamer assay was developed to determine the tetracycline residue in honey. First, a tetracycline–bovine serum albumin conjugate coating was applied to a microplate. Then, with the incubation of AuNPs-linked aptamer, the fixed tetracycline in the microplate competed for the limited aptamer with the free tetracycline in the sample. Higher amounts of free tetracycline in the sample were associated with more competitive binding of aptamer-AuNPs, and the aptamer-AuNPs binding with tetracycline-BSA was lower. Finally, as a kind of nanozyme, AuNPs exhibited peroxidase activity and oxidized 3,3′,5,5′-tetramethylbenzidine, transforming it from colorless to blue, and achieving the measurement at 652 nm. The analytical performance—including linearity, limit of detection, selectivity, precision, repeatability, and accuracy—has been investigated. It was successfully applied to the determination of tetracycline in honey samples with high accuracy and sensitivity.
Keywords