Water (Sep 2020)

Spatiotemporal Variation in Phytoplankton Community Driven by Environmental Factors in the Northern East China Sea

  • Yejin Kim,
  • Seok-Hyun Youn,
  • Hyun Ju Oh,
  • Jae Joong Kang,
  • Jae Hyung Lee,
  • Dabin Lee,
  • Kwanwoo Kim,
  • Hyo Keun Jang,
  • Junbeom Lee,
  • Sang Heon Lee

DOI
https://doi.org/10.3390/w12102695
Journal volume & issue
Vol. 12, no. 10
p. 2695

Abstract

Read online

The East China Sea (ECS) is the largest marginal sea in the northern western Pacific Ocean. In comparison to various physical studies, little information on the seasonal patterns in community structure of phytoplankton is currently available. Based on high performance liquid chromatography (HPLC) pigment analysis, spatiotemporal variations in phytoplankton community compositions were investigated in the northern ECS. Water temperature and salinity generally decreased toward the western part of the study area but warmer conditions in August led to strong vertical stratification of the water column. In general, major inorganic nutrient concentrations were considerably higher in the western part with a shallow water depth, and consistent with previous results, had no discernable vertical pattern during our observation period except in August. This study also revealed PO4-limited environmental conditions in May and August. The monthly averaged integral chlorophyll-a concentration varied seasonally, highest (35.2 ± 20.22 mg m−2) in May and lowest (5.2 ± 2.54 mg m−2) in February. No distinct vertical differences in phytoplankton community compositions were observed for all the sampling seasons except in August when cyanobacteria predominated in the nutrient-deficient surface layer and diatoms prevailed at deep layer. Canonical correlation analysis results revealed that nutrient distribution and the water temperature were the major drivers of the vertical distribution of phytoplankton communities in August. Spatially, a noticeable difference in phytoplankton community structure between the eastern and western parts was observed in November with diatom domination in the western part and cyanobacteria domination in the eastern part, which were significantly (p < 0.01) correlated with water temperature, salinity, light conditions, and nutrient concentrations. Overall, the two major phytoplankton groups were diatoms (32.0%) and cyanobacteria (20.6%) in the northern ECS and the two groups were negatively correlated, which holds a significant ecological meaning under expected warming ocean conditions.

Keywords