Food Chemistry: X (Oct 2024)

Optimizing the microwave-assisted hydrothermal extraction of pectin from tangerine by-product and its physicochemical, structural, and functional properties

  • Imed E. Benmebarek,
  • Diego J. Gonzalez-Serrano,
  • Fatemeh Aghababaei,
  • Dimitrios Ziogkas,
  • Rosario Garcia-Cruz,
  • Abbas Boukhari,
  • Andres Moreno,
  • Milad Hadidi

Journal volume & issue
Vol. 23
p. 101615

Abstract

Read online

Microwave-assisted hydrothermal extraction (MAHE) was optimized using a Box-Behnken design (BBD) of the response surface methodology (RSM) for optimal recovery of pectin from tangerine peel (TPP). The effects of three factors (pH, irradiation time and temperature) on extraction yield (EY), galacturonic acid content (GAC) and degree of esterification (DE) of pectin were investigated. The optimal extraction conditions were as follows: pH 1.7, irradiation time 12 min and temperature 109 °C. Under these conditions, the EY, GAC and DE were 30.4, 72.3 and 45.2%, respectively. The low methoxyl content of MHAE (45.2%) compared to CE is confirmed by the 1H NMR and FTIR spectra, and the emulsifying activity is 57.65% and 50.56% for CE and MHAE, respectively. The total phenolic content (TPC) of pectin produced using MAHE is 41.2 mg GAE/g, thus indicating higher antioxidant properties compared to pectin produced with CE, which had a TPC of 38.4 mg GAE/g. In addition, the X-ray diffraction (XRD) and surface morphological analysis (SEM) results showed that TPP had a rough surface and crystalline structure. Overall, our findings show that TTP from MAHE can be used as a natural antioxidant ingredient in the functional food and pharmaceutical industries.

Keywords