Biomedicine & Pharmacotherapy (Oct 2024)
The role of iron transporters and regulators in Alzheimer’s disease and Parkinson’s disease: Pathophysiological insights and therapeutic prospects
Abstract
Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.