EPJ Web of Conferences (Jan 2017)

Fusion and the Discovery of Isotopes

  • Thoennessen M.

DOI
https://doi.org/10.1051/epjconf/201716300060
Journal volume & issue
Vol. 163
p. 00060

Abstract

Read online

Heavy-ion fusion-evaporation has been the most productive method to form and identify new isotopes. Of the presently known over 3200 isotopes, almost 25% were discovered with heavy-ion induced reactions. Since the development of the first heavy-ion beam at Berkeley in 1950 most of the nuclides on the neutron-deficient side of the line of stability and all isotopes of the superheavy elements were discovered utilizing fusion reactions. In addition, some isotopes were first produced in heavy-ion transfer, charge-exchange, incomplete fusion or deep inelastic reactions. The discovery of isotopes relies on new advances in accelerator and detector technology. The continuous development of pioneering and innovative separation and detection techniques have pushed the limit towards ‒ and in many cases beyond ‒ the proton-dripline. A review of the discovery of neutron-deficient and super-heavy nuclides in heavy-ion induced reactions as well as an outlook for the discovery potential in the future is presented.