Journal of Neuroinflammation (Oct 2023)

NR4A1 deletion promotes pro-angiogenic polarization of macrophages derived from classical monocytes in a mouse model of neovascular age-related macular degeneration

  • Steven Droho,
  • Andrew P. Voigt,
  • Jacob K. Sterling,
  • Amrita Rajesh,
  • Kyle S. Chan,
  • Carla M. Cuda,
  • Harris Perlman,
  • Jeremy A. Lavine

DOI
https://doi.org/10.1186/s12974-023-02928-1
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1 −/− mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1 −/− mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1 se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. Main body We subjected Nr4a1 −/− and Nr4a1 se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1 −/− mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1 −/− mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1 −/− mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. Conclusions These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.

Keywords