Animals (Jan 2023)

Spatial Learning by Using Non-Visual Geometry and a Visual 3D Landmark in Zebrafish (<i>Danio rerio</i>)

  • Greta Baratti,
  • Sara Boffelli,
  • Davide Potrich,
  • Valeria Anna Sovrano

DOI
https://doi.org/10.3390/ani13030440
Journal volume & issue
Vol. 13, no. 3
p. 440

Abstract

Read online

Fish conjoin environmental geometry with conspicuous landmarks to reorient towards foraging sites and social stimuli. Zebrafish (Danio rerio) can merge a rectangular opaque arena with a 2D landmark (a blue-colored wall) but cannot merge a rectangular transparent arena with a 3D landmark (a blue cylinder) without training to “feel” the environment thanks to other-than-sight pathways. Thus, their success is linked to tasks differences (spontaneous vs. rewarded). This study explored the reorientation behavior of zebrafish within a rectangular transparent arena, with a blue cylinder outside, proximal to/distal from a target corner position, on the short/long side of the arena. Adult males were extensively trained to distinguish the correct corner from the rotational one, sharing an equivalent metric–sense relationship (short surface left, long surface right), to access food and companions. Results showed that zebrafish’s reorientation behavior was driven by both the non-visual geometry and the visual landmark, partially depending on the landmark’s proximity and surface length. Better accuracy was attained when the landmark was proximal to the target corner. When long-term experience was allowed, zebrafish handled non-visual and visual sensory stimulations over time for reorienting. We advance the possibility that multisensory processes affect fish’s reorientation behavior and spatial learning, providing a link through which to investigate animals’ exploratory strategies to face situations of visual deprivation or impairments.

Keywords