Gases (Sep 2024)
Using Carbon Dioxide for Subsea Long-Duration Energy Storage
Abstract
This paper investigates the operating benefits and limitations of utilizing carbon dioxide in hydro-pneumatic energy storage systems, a form of compressed gas energy storage technology, when the systems are deployed offshore. Allowing the carbon dioxide to transition into a two-phase fluid will improve the storage density for long-duration energy storage. A preliminary comparative study between an air-based and a carbon dioxide-based subsea hydro-pneumatic energy storage system is first presented. The analysis is based on thermodynamic calculations assuming ideal isothermal conditions to quantify the potential augmentation in energy storage capacity for a given volume of pressure containment when operating with carbon dioxide in lieu of air. This is followed by a transient thermal analysis of the carbon dioxide-based hydro-pneumatic energy storage system, taking into account the real scenario of a finite thermal resistance for heat exchange between the gas and the surrounding seawater. Results from numerical modelling revealed that the energy storage capacity of a carbon dioxide-based subsea hydro-pneumatic energy storage system operating under ideal isothermal conditions can be theoretically increased by a factor of 2.17 compared to an identical air-based solution. The numerical modelling revealed that, under real conditions under which transient effects resulting from a finite thermal resistance are accounted for, the achievable factor is lower, depending on the charging and discharging time, the initial temperature, and whether a polyethene liner for corrosion prevention is considered or not.
Keywords