Frontiers in Robotics and AI (Nov 2020)
COVID-19 Pandemic Spurs Medical Telerobotic Systems: A Survey of Applications Requiring Physiological Organ Motion Compensation
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has resulted in public health interventions such as physical distancing restrictions to limit the spread and transmission of the novel coronavirus, causing significant effects on the delivery of physical healthcare procedures worldwide. The unprecedented pandemic spurs strong demand for intelligent robotic systems in healthcare. In particular, medical telerobotic systems can play a positive role in the provision of telemedicine to both COVID-19 and non-COVID-19 patients. Different from typical studies on medical teleoperation that consider problems such as time delay and information loss in long-distance communication, this survey addresses the consequences of physiological organ motion when using teleoperation systems to create physical distancing between clinicians and patients in the COVID-19 era. We focus on the control-theoretic approaches that have been developed to address inherent robot control issues associated with organ motion. The state-of-the-art telerobotic systems and their applications in COVID-19 healthcare delivery are reviewed, and possible future directions are outlined.
Keywords