Heliyon (May 2023)

A new approach to the development and assessment of doxorubicin-loaded nanoliposomes for the treatment of osteosarcoma in 2D and 3D cell culture systems

  • Mastaneh Parchami,
  • Fateme Haghiralsadat,
  • Fatemeh Sadeghian-Nodoushan,
  • Mahdie Hemati,
  • Sajjad Shahmohammadi,
  • Nasrin Ghasemi,
  • Ghasem Sargazi

Journal volume & issue
Vol. 9, no. 5
p. e15495

Abstract

Read online

Doxorubicin (DOX) is an effective anticancer drug used for the treatment of osteosarcoma. Liposomal nanocarriers for doxorubicin administration are now regarded as one of the most promising approaches to overcome multiple drug resistance and adverse side effects. The use of hydrogel as a 3D scaffold to mimic the cellular environment and provide comparable biological conditions for deeper investigations of cellular processes has attracted considerable attention. This study aimed to evaluate the impact of liposomal doxorubicin on the osteosarcoma cell line in the presence of alginate hydrogel as a three-dimensional scaffold. Different liposomal formulations based on cholesterol, phospholipids, and surfactants containing doxorubicin were developed using the thin-layer hydration approach to improve therapeutic efficacy. The final selected formulation was superficially modified using DSPE-mPEG2000. A three-dimensional hydrogel culture model with appropriate structure and porosity was synthesized using sodium alginate and calcium chloride as crosslinks for hydrogel. Then, the physical properties of liposomal formulations, such as mechanical and porosity, were characterized. The toxicity of the synthesized hydrogel was also assessed. Afterward, the cytotoxicity of nanoliposomes was analyzed on the Saos-2 and HFF cell lines in the presence of a three-dimensional alginate scaffold using the MTT assay. The results indicated that the encapsulation efficiency, the amount of doxorubicin released within 8 h, the mean size of vesicles, and the surface charge were 82.2%, 33.0%, 86.8 nm, and −4.2 mv, respectively. As a result, the hydrogel scaffolds showed sufficient mechanical resistance and suitable porosity. The MTT assay demonstrated that the synthesized scaffold had no cytotoxicity against cells, while nanoliposomal DOX exhibited marked toxicity against the Saos-2 cell line in the 3D culture medium of alginate hydrogel compared to the free drug in the 2D culture medium. Our research showed that the 3D culture model physically resembles the cellular matrix, and nanoliposomal DOX with proper size could easily penetrate into cells and cause higher cytotoxicity compared to the 2D cell culture.

Keywords