Animal (Jan 2021)

Beet pulp substituted for corn silage and barley grain in diets fed to dairy cows in the summer months: feed intake, total-tract digestibility, and milk production

  • M. Heydari,
  • G.R. Ghorbani,
  • A. Sadeghi-Sefidmazgi,
  • H. Rafiee,
  • F. Ahamdi,
  • H. Saeidy

Journal volume & issue
Vol. 15, no. 1
p. 100063

Abstract

Read online

The responses of dairy cows to the substitution of beet pulp (BP) for grain or forage are not consistent, and heat stress may affect the response of dairy cows to this substitution. The effects of substituted BP for corn silage and barley grain on feed intake, performance, and ruminal parameters were evaluated using eight multiparous Holstein cows in a duplicated 4 × 4 Latin square design with 21-day periods. Cows were in mid-lactation (45.4 ± 3.6 kg/day milk production and 116 ± 10 days in milk) with an average BW of 664 ± 41.2 kg. Dietary treatments were as follows: 1) 0% BP (0BP, control, 38.5% barley grain, and 20.3% corn silage); 2) 12% BP (12BP, 32.5% barley grain, and 14.3% corn silage); 3) 18% BP (18BP, 29.5% barley grain, and 11.3% corn silage); and 4) 24% BP (24BP, 26.5% barley grain, and 8.3% corn silage). Cows were under mild heat stress and the average temperature–humidity index was 70.5; increasing BP caused a linear decrease in respiration rate (P < 0.01). Higher BP in the diet caused a linear increase in DM intake (P = 0.01) and NDF digestibility (P = 0.03). Dry and organic matter (OM) digestibilities tended to increase linearly with higher BP (P < 0.10). Milk yield, energy-corrected milk, protein, lactose, and fat production and content were not affected by the treatments. Increasing BP in the diet caused a linear decrease in feed efficiency and rumen ammonia (P < 0.05) and a tendency to a linear decrease in milk urea nitrogen (P < 0.10). Rumen pH and acetate to propionate ratio were not affected by the replacement. Total volatile fatty acid concentration in the rumen increased linearly with increasing the BP inclusion (P = 0.04). Acetate and butyrate (P = 0.07) proportion tended to increase, whereas propionate (P = 0.06) and isovalerate (P = 0.08) proportion tended to decrease linearly as BP was substituted for corn silage and barley grain. The results indicated that under mild heat stress condition, BP can be successfully substituted for barley grain and corn silage up to 24% of the diet without any negative effect on production and ruminal pH.

Keywords