Inorganics (May 2023)

Dual-Exciting Central Carbon Nanoclusters for the Dual-Channel Detection of Hemin

  • Ya-Ting Gao,
  • Shuai Chang,
  • Bin-Bin Chen,
  • Da-Wei Li

DOI
https://doi.org/10.3390/inorganics11060226
Journal volume & issue
Vol. 11, no. 6
p. 226

Abstract

Read online

Constructing optical nanoprobes with superior performance is highly desirable for sensitive and accurate assays. Herein, we develop a facile room-temperature strategy for the fabrication of green emissive carbon nanoclusters (CNCs) with dual-exciting centers for the dual-channel sensing of hemin. The formation of the CNCs is attributed to the crosslinking polymerization of the precursors driven by the Schiff base reaction between ethylenediamine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Most importantly, the proposed CNCs have a unique excitation-independent green emission (518 nm) with two excitation centers at 260 nm (channel 1) and 410 nm (channel 2). The dual-exciting central emission can serve as dual-channel fluorescence (FL) signals for highly sensitive and reliable detection of hemin based on the inner filter effect. Because of the great spectral overlap difference between the absorption spectrum of hemin and the excitation lights of the CNCs in the two channels, hemin has a different quenching effect on FL emission from different channels. The dual-channel signals of the CNCs can detect hemin in the range of 0.075–10 μM (channel 1) and 0.25–10 μM (channel 2), respectively. These findings not only offer new guidance for the facile synthesis of dual-exciting central CNCs but also establish a reliable sensing platform for the analysis of hemin in complex matrixes.

Keywords