Beilstein Journal of Organic Chemistry (Jun 2012)

Parallel and four-step synthesis of natural-product-inspired scaffolds through modular assembly and divergent cyclization

  • Hiroki Oguri,
  • Haruki Mizoguchi,
  • Hideaki Oikawa,
  • Aki Ishiyama,
  • Masato Iwatsuki,
  • Kazuhiko Otoguro,
  • Satoshi Ōmura

DOI
https://doi.org/10.3762/bjoc.8.105
Journal volume & issue
Vol. 8, no. 1
pp. 930 – 940

Abstract

Read online

By emulating the universal biosynthetic strategy, which employs modular assembly and divergent cyclizations, we have developed a four-step synthetic process to yield a collection of natural-product-inspired scaffolds. Modular assembly of building blocks onto a piperidine-based manifold 6, having a carboxylic acid group, was achieved through Ugi condensation, N-acetoacetylation and diazotransfer, leading to cyclization precursors. The rhodium-catalyzed tandem cyclization and divergent cycloaddition gave rise to tetracyclic and hexacyclic scaffolds by the appropriate choice of dipolarophiles installed at modules 3 and 4. A different piperidine-based manifold 15 bearing an amino group was successfully applied to demonstrate the flexibility and scope of the unified four-step process for the generation of structural diversity in the fused scaffolds. Evaluation of in vitro antitrypanosomal activities of the collections and preliminary structure–activity relationship (SAR) studies were also undertaken.

Keywords