Remote Sensing in Ecology and Conservation (Feb 2022)
Using camera traps to estimate ungulate abundance: a comparison of mark–resight methods
Abstract
Abstract Many global wildlife populations are experiencing unprecedented declines. Estimates of population abundance are needed to effectively manage common species and to conserve vulnerable species. Camera traps have advanced as wildlife monitoring tools for ungulates and can provide improved methods of estimating population abundance. Little is known, however, about how camera traps set for ungulates compare with traditional methods (e.g., ground and aerial surveys) used simultaneously. From 2012 to 2014, we captured and radio collared 34 female and 32 male bighorn sheep (Ovis canadensis) in a closed population in Utah, USA. Each collar had a unique letter and number combination. We then estimated number of young, females and yearlings, males and population abundance using multiple methods simultaneously: helicopter surveys, resight surveys performed from the ground, camera trap surveys using marked but not individually identifiable individuals and camera trap surveys using marked and individually identifiable animals. All methods estimated similar abundance. Across years, ages and sexes, however, camera trap surveys produced the most consistent and precise estimates of abundance for adult females and yearlings, lambs and the population. That method was less intrusive and safer than helicopter surveys. Our results indicate that camera trap surveys using photographs of marked animals in which the majority of the population visits a specific resource can produce precise estimates of abundance that are safer, as well as less intrusive and expensive than traditional methods. Using camera traps also creates a permanent record of photographs that can be archived and reanalyzed to answer future ecological and population questions. Finally, this method of estimating abundance can be used in other areas with ungulates that congregate around resources (e.g., watering sites or mineral licks).
Keywords