Spin–orbit coupling (SOC) in tightly focused optical fields offers a powerful mechanism for manipulating the complex motion of particles. However, to date, such a mechanism has only been applied to the single-orbit motion for particles, while multi-orbital dynamics have not yet been experimentally demonstrated. Here, the theoretical and experimental realization of dual-orbit rotational dynamics of nanoparticles in a tightly focused circularly polarized Laguerre-Gaussian beam is reported. Analyses reveal that the dual-orbit rotation of nanoparticles originates from SOC in a tightly focused vortex beam, with the motion velocity and direction determined by the topological charge of the beam. Experimentally, the dual-orbit rotation of polystyrene nanoparticles was observed for the first time using an inverted optical tweezer. In addition, the rotation velocity showed a clear linear dependence on the topological charge of the incident beam. This work reveals the pivotal role of SOC in enabling precise dual-orbit control at the nanoscale, paving the way for applications in optical sorting, grinding and delivery of microparticles.