PLoS ONE (Jan 2019)

A modified two-compartment model for measurement of renal function using dynamic contrast-enhanced computed tomography.

  • Kai Jiang,
  • Christopher M Ferguson,
  • Abdelrhman Abumoawad,
  • Ahmed Saad,
  • Stephen C Textor,
  • Lilach O Lerman

DOI
https://doi.org/10.1371/journal.pone.0219605
Journal volume & issue
Vol. 14, no. 7
p. e0219605

Abstract

Read online

ObjectivesTo validate and adapt a modified two-compartment model, originally developed for magnetic resonance imaging, for measuring human single-kidney glomerular filtration rate (GFR) and perfusion using dynamic contrast-enhanced computed tomography (DCE-CT).MethodsThis prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Thirty-eight patients with essential hypertension (EH, n = 13) or atherosclerotic renal artery stenosis (ARAS, n = 25) underwent renal DCE-CT for GFR and perfusion measurement using a modified two-compartment model. Iothalamate clearance was used to measure reference total GFR, which was apportioned into single-kidney GFR by renal blood flow. Renal perfusion was also calculated using a conventional deconvolution algorithm. Validation of GFR and perfusion and inter-observer reproducibility, were conducted by using the Pearson correlation and Bland-Altman analysis.ResultsBoth the two-compartment model and iothalamate clearance detected in ARAS patients lower GFR in the stenotic compared to the contralateral and EH kidneys. GFRs measured by DCE-CT and iothalamate clearance showed a close match (r = 0.94, PConclusionThe proposed two-compartment model faithfully depicts contrast dynamics using DCE-CT and may provide a reliable tool for measuring human single-kidney GFR and perfusion.