Physics Letters B (Jun 2017)

Measurement of key resonance states for the P30(p,γ)S31 reaction rate, and the production of intermediate-mass elements in nova explosions

  • A. Kankainen,
  • P.J. Woods,
  • H. Schatz,
  • T. Poxon-Pearson,
  • D.T. Doherty,
  • V. Bader,
  • T. Baugher,
  • D. Bazin,
  • B.A. Brown,
  • J. Browne,
  • A. Estrade,
  • A. Gade,
  • J. José,
  • A. Kontos,
  • C. Langer,
  • G. Lotay,
  • Z. Meisel,
  • F. Montes,
  • S. Noji,
  • F. Nunes,
  • G. Perdikakis,
  • J. Pereira,
  • F. Recchia,
  • T. Redpath,
  • R. Stroberg,
  • M. Scott,
  • D. Seweryniak,
  • J. Stevens,
  • D. Weisshaar,
  • K. Wimmer,
  • R. Zegers

DOI
https://doi.org/10.1016/j.physletb.2017.01.084
Journal volume & issue
Vol. 769, no. C
pp. 549 – 553

Abstract

Read online

We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the P30(p,γ)S31 reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The P30(d,n)S31 reaction was studied in inverse kinematics using the GRETINA γ-ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative-parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicate the dominance of a single 3/2− resonance state at 196 keV in the region of nova burning T≈0.10–0.17 GK, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.