npj Precision Oncology (Nov 2024)

Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology

  • Siddhi Ramesh,
  • Emma Dyer,
  • Monica Pomaville,
  • Kristina Doytcheva,
  • James Dolezal,
  • Sara Kochanny,
  • Rachel Terhaar,
  • Casey J. Mehrhoff,
  • Kritika Patel,
  • Jacob Brewer,
  • Benjamin Kusswurm,
  • Arlene Naranjo,
  • Hiroyuki Shimada,
  • Nicole A. Cipriani,
  • Aliya N. Husain,
  • Peter Pytel,
  • Elizabeth A. Sokol,
  • Susan L. Cohn,
  • Rani E. George,
  • Alexander T. Pearson,
  • Mark A. Applebaum

DOI
https://doi.org/10.1038/s41698-024-00745-0
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 6

Abstract

Read online

Abstract A deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess MYCN-amplification status using H&E-stained whole slide images from the largest reported cohort to date. The model showed promising performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and MYCN-amplification with validation on an external test dataset, suggesting potential for AI-assisted neuroblastoma classification.