Cancer Cell International (Dec 2006)

Mechanisms of genotoxin-induced transcription and hypermutation in <it>p53</it>

  • Burkala Evan,
  • Schmidt Karen,
  • Reimers Jacqueline,
  • Wright Barbara,
  • Davis Nick,
  • Wei Ping

DOI
https://doi.org/10.1186/1475-2867-6-27
Journal volume & issue
Vol. 6, no. 1
p. 27

Abstract

Read online

Abstract It is widely assumed that genotoxin-induced damage (e.g., G-to-T transversions) to the tumor suppressor gene, p53, is a direct cause of cancer. However, genotoxins also induce the stress response, which upregulates p53 transcription and the formation of secondary structures from ssDNA. Since unpaired bases are thermodynamically unstable and intrinsically mutable, increased transcription could be the cause of hypermutation, and thus cancer. Support for this hypothesis has been obtained by analyzing 6662 mutations in all types of cancer compared to lung and colon cancers, using the p53 mutation database. The data suggest that genotoxins have two independent effects: first, they induce p53 transcription, which increases the number of mutable bases that determine the incidence of cancer. Second, genotoxins may alter the fate, or ultimate mutation of a mutable base, for example, by causing more of the available mutable Gs to mutate to T, leaving fewer to mutate to A. Such effects on the fate of mutable bases have no impact on the incidence of cancer, as both types of mutations lead to cancer.