Retrovirology (Oct 2012)

Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome

  • Song Hongshuo,
  • Pavlicek Jeffrey W,
  • Cai Fangping,
  • Bhattacharya Tanmoy,
  • Li Hui,
  • Iyer Shilpa S,
  • Bar Katharine J,
  • Decker Julie M,
  • Goonetilleke Nilu,
  • Liu Michael KP,
  • Berg Anna,
  • Hora Bhavna,
  • Drinker Mark S,
  • Eudailey Josh,
  • Pickeral Joy,
  • Moody M,
  • Ferrari Guido,
  • McMichael Andrew,
  • Perelson Alan S,
  • Shaw George M,
  • Hahn Beatrice H,
  • Haynes Barton F,
  • Gao Feng

DOI
https://doi.org/10.1186/1742-4690-9-89
Journal volume & issue
Vol. 9, no. 1
p. 89

Abstract

Read online

Abstract Background A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. Results The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. Conclusions These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.

Keywords