AIMS Microbiology (Nov 2024)

<i>Aspergillus</i>-<i>Penicillium</i> co-culture: An investigation of bioagents for controlling <i>Fusarium proliferatum</i>-induced basal rot in onion

  • Mohammed M. M. Abdelrahem,
  • Mohamed E. Abouelela,
  • Nageh F. Abo-Dahab,
  • Abdallah M. A. Hassane

DOI
https://doi.org/10.3934/microbiol.2024044
Journal volume & issue
Vol. 10, no. 4
pp. 1024 – 1051

Abstract

Read online

Fungal co-culture is a method that allows the detection of interactions between fungi, enabling the examination of bioactive novel metabolites induction that may not be produced in monocultures. Worldwide, Fusarium basal rot is a primary limitation to onion yield, being caused by different Fusarium species. Current research directions encourage biological control of plant diseases as a replacement for routine chemical treatments. The current study aimed to investigate the co-culturing technique for mining new sources of bioagents that could be used as fungicides. Aspergillus ochraceus AUMC15539 was co-cultured with Penicillium chrysogenum AUMC15504, and their ethyl acetate extract was tested in vitro and in a greenhouse against Fusarium proliferatum AUMC15541. The results showed that Aspergillus-Penicillium (AP) co-culture extract significantly inhibited the growth of F. proliferatum with an MIC value of 0.78 mg/mL and showed antioxidant efficiency with an IC50 value of 1.31 mg/mL. The brine shrimp toxicity testing showed a LC50 value of 2.77 mg/mL. In addition, the co-culture extract showed the highest phenolic content at 114.71 GAE mg/g, with a 27.82 QE mg/g flavonoid content. Profiling of AP co-culture and its monoculture extracts by HPLC revealed a change in the metabolites profile in AP co-culture. Principal component analysis verified a positive correlation between the obtained HPLC data of A. ochraceus (A), P. chrysogenum (P), and AP extracts. Greenhouse experiments demonstrated that treating infected onion plants with the AP co-culture extract significantly enhanced all growth parameters. Additionally, the co-culture extract treatment resulted in the highest levels of total pigments (3.46 mg/g), carbohydrates (52.10 mg/g dry weight), proteins (131.44 mg/g), phenolics (41.66 GAE mg/g), and flavonoids (9.43 QE mg/g) compared with other treatments. This indicates a promising potential for fungal co-cultures in discovering new bioagents with antifungal properties and growth-promoting capabilities.

Keywords