Genetics and Molecular Biology (Jan 2007)

TaqI B1/B2 and -629A/C cholesteryl ester transfer protein (CETP) gene polymorphisms and their association with CETP activity and high-density lipoprotein cholesterol levels in a Tehranian population. Part of the Tehran Lipid and Glucose Study (TLGS)

  • Maryam S Daneshpour,
  • Mehdi Hedayati,
  • Fereidoun Azizi

DOI
https://doi.org/10.1590/S1415-47572007000600001
Journal volume & issue
Vol. 30, no. 4
pp. 1039 – 1046

Abstract

Read online

We examined the cholesteryl ester transfer protein (CETP) gene TaqI intron 1 B1/B2 polymorphism and the -629A/C CETP promoter polymorphism in respect to high-density lipoprotein cholesterol (HDL-C) in a healthy Iranian population taken from the Tehran Lipid and Glucose Study (TLGS). The relationship between CETP activity and HDL-C level was also determined along with body mass index, blood pressure and tobacco smoking status. PCR-RFLP used to amplify a segment of the CETP intron 1 TaqI (B2/B1) polymorphism from 1021 individuals and we selected 345 individuals from the lowest, middle and highest HDL-C deciles and investigated the -629A/C polymorphism. We also evaluated the CETP activity of 103 of these individuals, each with at least one homozygous allele. The presence of the TaqI B2 and -629A/C A alleles were significantly associated with increased HDL-C levels (B2B2 = 1.19 ± 0.31 mmolL-1 vs. B1B1 = 1.01 ± 0.2 mmol L-1 for p < 0.001; AA = 1.15 ± 0.41 mmol L-1 vs. CC = 0.95 ± 0.28 mmol L-1 for p < 0.001) and decreased the CETP activity (B1B1 = 67.8 ± 8.9 pmol L-1 vs. B2B2 = 62.6 ± 9.6 pmol L-1 for p < 0.01; CC = 68.6 ± 8.4 pmol L-1 vs. AA = 62.7 ± 9.7 pmol L-1 for p < 0.002). The frequencies were 0.382 for the TaqI B2 allele and 0.462 for the -629A/C A allele, with linkage disequilibrium analysis giving D = 0.0965 and D' = 0.4695. We demonstrated that the TaqI B1 and B2 alleles and the -629A/C A and C alleles were in linkage disequilibrium in our population and that there was a significant association between the B2 and A alleles and high HDL-C levels and low CETP activity. Linkage disequilibrium between the TaqI A and B2 alleles also detected.

Keywords