Photonics is a natural next technological step after an era of electronics. However, the diffraction limit of light poses severe limitations on photonic elements and dictates their size. Herein, we demonstrate that layered semiconductors solve this challenge thanks to their giant optical anisotropy. In particular, waveguides with molybdenum disulfide (MoS2) and tungsten disulfide (WS2) claddings can operate in a transparency region slightly above (20%) the diffraction limit and even overcome it by 10% around 700 nm, providing an even better confinement than air cladding, but with excitonic losses. Further analysis reveals that van der Waals materials with an in-plane refractive index of about five or an out-of-plane index around two provide subdiffractional and lossless guidance. Therefore, our results establish the route for ultra-dense photonic integration based on layered materials.