Diagnostics (Dec 2021)

Advanced Multiplex Loop Mediated Isothermal Amplification (mLAMP) Combined with Lateral Flow Detection (LFD) for Rapid Detection of Two Prevalent Malaria Species in India and Melting Curve Analysis

  • Supriya Sharma,
  • Sandeep Kumar,
  • Md Zohaib Ahmed,
  • Nitin Bhardwaj,
  • Jaskirat Singh,
  • Sarita Kumari,
  • Deepali Savargaonkar,
  • Anupkumar R. Anvikar,
  • Jyoti Das

DOI
https://doi.org/10.3390/diagnostics12010032
Journal volume & issue
Vol. 12, no. 1
p. 32

Abstract

Read online

Isothermal techniques with lateral flow detection have emerged as a point of care (POC) technique for malaria, a major parasitic disease in tropical countries such as India. Plasmodium falciparum and Plasmodium vivax are the two most prevalent malaria species found in the country. An advanced multiplex loop-mediated isothermal amplification (mLAMP) combined with a lateral flow dipstick (LFD) technique was developed for the swift and accurate detection of P. falciparum and P. vivax, overcoming the challenges of the existing RDTs (rapid diagnostic tests). A single set of LAMP primers with a biotinylated backward inner primer (BIP primer) was used for DNA amplification of both malaria species in a single tube. The amplified DNA was hybridized with fluorescein isothiocyanate (FITC) and digoxigenin-labelled DNA probes, having a complemented sequence for the P. falciparum and P. vivax genomes, respectively. A colour band appeared on two separate LFDs for P. falciparum and P. vivax upon running the hybridized solution over them. In total, 39 clinical samples were collected from ICMR-NIMR, New Delhi. Melting curve analysis, with cross primers for both species, was used to ascertain specificity, and the sensitivity was equated with a polymerase chain reaction (PCR). The results were visualized on the LFD for both species within 60 min. We found 100% sensitivity and specificity, when compared with a traditional PCR. Melting curve analysis of mLAMP revealed the lowest detection limit of 0.15 pg/μL from sample genomic DNA. The mLAMP-LFD assays could be a potential point of care (POC) tool for early diagnosis in non-laboratory conditions, with the convenience of a reduced assay time and the simple interpretation of results.

Keywords