The Astrophysical Journal (Jan 2024)
Superphot+: Real-time Fitting and Classification of Supernova Light Curves
Abstract
Photometric classifications of supernova (SN) light curves have become necessary to utilize the full potential of large samples of observations obtained from wide-field photometric surveys, such as the Zwicky Transient Facility (ZTF) and the Vera C. Rubin Observatory. Here, we present a photometric classifier for SN light curves that does not rely on redshift information and still maintains comparable accuracy to redshift-dependent classifiers. Our new package, Superphot+, uses a parametric model to extract meaningful features from multiband SN light curves. We train a gradient-boosted machine with fit parameters from 6061 ZTF SNe that pass data quality cuts and are spectroscopically classified as one of five classes: SN Ia, SN II, SN Ib/c, SN IIn, and SLSN-I. Without redshift information, our classifier yields a class-averaged F _1 -score of 0.61 ± 0.02 and a total accuracy of 0.83 ± 0.01. Including redshift information improves these metrics to 0.71 ± 0.02 and 0.88 ± 0.01, respectively. We assign new class probabilities to 3558 ZTF transients that show SN-like characteristics (based on the ALeRCE Broker light-curve and stamp classifiers) but lack spectroscopic classifications. Finally, we compare our predicted SN labels with those generated by the ALeRCE light-curve classifier, finding that the two classifiers agree on photometric labels for 82% ± 2% of light curves with spectroscopic labels and 72% ± 0% of light curves without spectroscopic labels. Superphot+ is currently classifying ZTF SNe in real time via the ANTARES Broker, and is designed for simple adaptation to six-band Rubin light curves in the future.
Keywords