Applied Sciences (Dec 2021)

LaFe<sub>1-x</sub>Ni<sub>x</sub> as a Robust Catalytic Oxygen Carrier for Chemical Looping Conversion of Toluene

  • Haiming Gu,
  • Juan Yang,
  • Guohui Song,
  • Xiaobo Cui,
  • Miaomiao Niu,
  • Shanhui Zhao

DOI
https://doi.org/10.3390/app12010391
Journal volume & issue
Vol. 12, no. 1
p. 391

Abstract

Read online

Chemical looping biomass gasification is a novel technology converting biomass into syngas, and the selection of oxygen carrier is key for efficient tar conversion. The performance of LaFe1-xNix as a robust catalytic oxygen carrier was investigated in the chemical looping conversion of toluene (tar model compound) into syngas in a fixed bed. LaM (M = Fe, Ni, Mn, Co, and Cu) was initially compared to evaluate the effect of transition metal on toluene conversion. LaFe (partial oxidation) and LaNi (catalytic pyrolysis) exhibited better performance in promoting syngas production than other oxygen carriers. Therefore, Ni-substituted ferrite LaFe1-xNix (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) was further developed. The effects of Ni-substitution, steam/carbon ratio (S/C), and temperature on toluene conversion into C1 and H2 were evaluated. Results showed that the synergistic effect of Fe and Ni promoted toluene conversion, improving H2 yield yet with serious carbon deposition. Steam addition promoted toluene steam reforming and carbon gasification. With S/C increasing from 0.8 to 2.0, the C1 and H2 yield increased from 73.9% to 97.5% and from 197.7% to 269.6%, respectively. The elevated temperature favored toluene conversion and C1 yield. LaFe0.6Ni0.4 exhibited strong reactivity stability during toluene conversion at S/C = 1.6 and 900 °C.

Keywords