Cell Death and Disease (Apr 2022)

Hsa_circRNA_0088036 acts as a ceRNA to promote bladder cancer progression by sponging miR-140-3p

  • Jun Yang,
  • Manlong Qi,
  • Xiang Fei,
  • Xia Wang,
  • Kefeng Wang

DOI
https://doi.org/10.1038/s41419-022-04732-w
Journal volume & issue
Vol. 13, no. 4
pp. 1 – 13

Abstract

Read online

Abstract Circular RNAs (circRNAs) are a class of non-coding RNAs that play vital roles in cancer biology. However, the potential role of hsa_circRNA_0088036 in bladder cancer (BCa) remains unknown. Hsa_circRNA_0088036 was identified by microarray analysis and validated by quantitative real-time polymerase chain reaction. Functional assays were conducted to confirm the effects of hsa_circRNA_0088036 on the growth, migration, invasion, tumorigenesis, and metastasis of BCa cells. The luciferase reporter assay and RNA pull down assay were performed to investigate the interactions between hsa_circRNA_0088036, miR-140-3p, and forkhead box protein Q1 (FOXQ1). Upregulated expression of hsa_circRNA_0088036 in BCa tissues and cell lines was positively correlated with overall survival and clinicopathologic characteristics. Knockdown of hsa_circRNA_0088036 inhibited the growth, migration, and invasion of BCa cells both in vivo and in vitro. Mechanistically, hsa_circRNA_0088036 could directly interact with miR-140-3p and act as a miRNA sponge to modulate FOXQ1 expression. Knockdown of hsa_circRNA_0088036 inhibited the proliferation, migration, and metastasis of BCa cells via miR-140-3p/FOXQ1 signaling, suggesting that hsa_circRNA_0088036 is a potential biomarker and therapeutic target for BCa.