IUCrJ (May 2021)

Synchrotron total-scattering data applicable to dual-space structural analysis

  • Jonas Beyer,
  • Kenichi Kato,
  • Bo Brummerstedt Iversen

DOI
https://doi.org/10.1107/S2052252521001664
Journal volume & issue
Vol. 8, no. 3
pp. 387 – 394

Abstract

Read online

Synchrotron powder X-ray diffraction (PXRD) is a well established technique for investigating the atomic arrangement of crystalline materials. At modern beamlines, X-ray scattering data can be collected in a total-scattering setting, which additionally opens up the opportunity for direct-space structural analysis through the atomic pair distribution function (PDF). Modelling of PXRD and PDF data is typically carried out separately, but employing a concurrent structural model to both direct- and reciprocal-space data has the possibility to enhance total-scattering data analysis. However, total-scattering measurements applicable to such dual-space analyses are technically demanding. Recently, the technical demands have been fulfilled by a MYTHEN microstrip detector system (OHGI), which meets the stringent requirements for both techniques with respect to Q range, Q resolution and dynamic range. In the present study, we evaluate the quality of total-scattering data obtained with OHGI by separate direct- and reciprocal-space analysis of Si. Excellent agreement between structural parameters in both spaces is found, demonstrating that the total-scattering data from OHGI can be utilized in dual-space structural analysis e.g. for in situ and operando measurements.

Keywords