Environmental Health (Jul 2017)

Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment

  • Zhaoxi Wang,
  • Birgit Claus Henn,
  • Chaolong Wang,
  • Yongyue Wei,
  • Li Su,
  • Ryan Sun,
  • Han Chen,
  • Peter J. Wagner,
  • Quan Lu,
  • Xihong Lin,
  • Robert Wright,
  • David Bellinger,
  • Molly Kile,
  • Maitreyi Mazumdar,
  • Martha Maria Tellez-Rojo,
  • Lourdes Schnaas,
  • David C. Christiani

DOI
https://doi.org/10.1186/s12940-017-0288-3
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Neurodevelopment is a complex process involving both genetic and environmental factors. Prenatal exposure to lead (Pb) has been associated with lower performance on neurodevelopmental tests. Adverse neurodevelopmental outcomes are more frequent and/or more severe when toxic exposures interact with genetic susceptibility. Methods To explore possible loci associated with increased susceptibility to prenatal Pb exposure, we performed a genome-wide gene-environment interaction study (GWIS) in young children from Mexico (n = 390) and Bangladesh (n = 497). Prenatal Pb exposure was estimated by cord blood Pb concentration. Neurodevelopment was assessed using the Bayley Scales of Infant Development. Results We identified a locus on chromosome 8, containing UNC5D, and demonstrated evidence of its genome-wide significance with mental composite scores (rs9642758, p meta = 4.35 × 10−6). Within this locus, the joint effects of two independent single nucleotide polymorphisms (SNPs, rs9642758 and rs10503970) had a p-value of 4.38 × 10−9 for mental composite scores. Correlating GWIS results with in vitro transcriptomic profiles identified one common gene, SLC1A5, which is involved in synaptic function, neuronal development, and excitotoxicity. Further analysis revealed interconnected interactions that formed a large network of 52 genes enriched with oxidative stress genes and neurodevelopmental genes. Conclusions Our findings suggest that certain genetic polymorphisms within/near genes relevant to neurodevelopment might modify the toxic effects of Pb exposure via oxidative stress.

Keywords