Advanced Science (Feb 2024)

Revealing Two Distinct Formation Pathways of 2D Wurtzite‐CdSe Nanocrystals Using In Situ X‐Ray Scattering

  • Hyo Cheol Lee,
  • Megalamane S. Bootharaju,
  • Kyunghoon Lee,
  • Hogeun Chang,
  • Seo Young Kim,
  • Eonhyoung Ahn,
  • Shi Li,
  • Byung Hyo Kim,
  • Hyungju Ahn,
  • Taeghwan Hyeon,
  • Jiwoong Yang

DOI
https://doi.org/10.1002/advs.202307600
Journal volume & issue
Vol. 11, no. 6
pp. n/a – n/a

Abstract

Read online

Abstract Understanding the mechanism underlying the formation of quantum‐sized semiconductor nanocrystals is crucial for controlling their synthesis for a wide array of applications. However, most studies of 2D CdSe nanocrystals have relied predominantly on ex situ analyses, obscuring key intermediate stages and raising fundamental questions regarding their lateral shapes. Herein, the formation pathways of two distinct quantum‐sized 2D wurtzite‐CdSe nanocrystals — nanoribbons and nanosheets — by employing a comprehensive approach, combining in situ small‐angle X‐ray scattering techniques with various ex situ characterization methods is studied. Although both nanostructures share the same thickness of ≈1.4 nm, they display contrasting lateral dimensions. The findings reveal the pivotal role of Se precursor reactivity in determining two distinct synthesis pathways. Specifically, highly reactive precursors promote the formation of the nanocluster‐lamellar assemblies, leading to the synthesis of 2D nanoribbons with elongated shapes. In contrast, mild precursors produce nanosheets from a tiny seed of 2D nuclei, and the lateral growth is regulated by chloride ions, rather than relying on nanocluster‐lamellar assemblies or Cd(halide)2–alkylamine templates, resulting in 2D nanocrystals with relatively shorter lengths. These findings significantly advance the understanding of the growth mechanism governing quantum‐sized 2D semiconductor nanocrystals and offer valuable guidelines for their rational synthesis.

Keywords