Dendritic Cells or Macrophages? The Microenvironment of Human Clear Cell Renal Cell Carcinoma Imprints a Mosaic Myeloid Subtype Associated with Patient Survival
Dorothee Brech,
Anna S. Herbstritt,
Sarah Diederich,
Tobias Straub,
Evangelos Kokolakis,
Martin Irmler,
Johannes Beckers,
Florian A. Büttner,
Elke Schaeffeler,
Stefan Winter,
Matthias Schwab,
Peter J. Nelson,
Elfriede Noessner
Affiliations
Dorothee Brech
Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
Anna S. Herbstritt
Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
Sarah Diederich
Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
Tobias Straub
Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
Evangelos Kokolakis
Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
Martin Irmler
Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Johannes Beckers
Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Florian A. Büttner
Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
Elke Schaeffeler
Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
Stefan Winter
Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
Matthias Schwab
Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
Peter J. Nelson
Medizinische Klinik und Poliklinik IV, University of Munich, 80336 Munich, Germany
Elfriede Noessner
Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
Since their initial description by Elie Metchnikoff, phagocytes have sparked interest in a variety of biologic disciplines. These important cells perform central functions in tissue repair and immune activation as well as tolerance. Myeloid cells can be immunoinhibitory, particularly in the tumor microenvironment, where their presence is generally associated with poor patient prognosis. These cells are highly adaptable and plastic, and can be modulated to perform desired functions such as antitumor activity, if key programming molecules can be identified. Human clear cell renal cell carcinoma (ccRCC) is considered immunogenic; yet checkpoint blockades that target T cell dysfunction have shown limited clinical efficacy, suggesting additional layers of immunoinhibition. We previously described “enriched-in-renal cell carcinoma” (erc) DCs that were often found in tight contact with dysfunctional T cells. Using transcriptional profiling and flow cytometry, we describe here that ercDCs represent a mosaic cell type within the macrophage continuum co-expressing M1 and M2 markers. The polarization state reflects tissue-specific signals that are characteristic of RCC and renal tissue homeostasis. ErcDCs are tissue-resident with increasing prevalence related to tumor grade. Accordingly, a high ercDC score predicted poor patient survival. Within the profile, therapeutic targets (VSIG4, NRP1, GPNMB) were identified with promise to improve immunotherapy.