Applied Sciences (Oct 2024)
Microscopic Analysis of Structure and Wear for Metallic Materials Using SEM
Abstract
The introduced work deals with the microscopic analysis of metallographically prepared selected metal materials structures, using a scanning electron microscope (SEM). Prepared samples of seamless steel pipes were subjected to a thorough microscopic examination from the outer surface to the inner regions in order to interpret the specific structure, including the change in the inner surfaces due to wear. The experiment demonstrated that the microstructure and character of the surfaces play a key role in the behavior of metallic materials in real conditions of hot water heating. Four pipe samples were monitored according to their use. The unused steel pipe (designated as sample No. 1) exhibited a rough outer surface with identified inclusions, while the used pipe (designated as sample No. 2) showed marks of intergranular corrosion and significant wear after long-term use. The older pipe (designated as sample No. 3) showed a decarburized area and inclusions containing sulfides and aluminum. The steel pipe with corrosion layers (designated as sample No. 4) exhibited a continuous corrosion layer with cavitation and cracks. The results of this study offer a comprehensive view of the influence of the nature of microstructure and wear on water flow in metal pipes, with an emphasis on the identification of possible risks associated with geometry change, corrosion, and wear. The findings form the basis for predicting degradation and appropriate maintenance in order to ensure their long and reliable service life under real conditions of use. They offer the possibility of continuing and expanding research and analysis of the use of metallic materials in comparison with polymers and composites.
Keywords