Journal of Imaging (Aug 2024)
Concrete Crack Detection and Segregation: A Feature Fusion, Crack Isolation, and Explainable AI-Based Approach
Abstract
Scientific knowledge of image-based crack detection methods is limited in understanding their performance across diverse crack sizes, types, and environmental conditions. Builders and engineers often face difficulties with image resolution, detecting fine cracks, and differentiating between structural and non-structural issues. Enhanced algorithms and analysis techniques are needed for more accurate assessments. Hence, this research aims to generate an intelligent scheme that can recognize the presence of cracks and visualize the percentage of cracks from an image along with an explanation. The proposed method fuses features from concrete surface images through a ResNet-50 convolutional neural network (CNN) and curvelet transform handcrafted (HC) method, optimized by linear discriminant analysis (LDA), and the eXtreme gradient boosting (XGB) classifier then uses these features to recognize cracks. This study evaluates several CNN models, including VGG-16, VGG-19, Inception-V3, and ResNet-50, and various HC techniques, such as wavelet transform, counterlet transform, and curvelet transform for feature extraction. Principal component analysis (PCA) and LDA are assessed for feature optimization. For classification, XGB, random forest (RF), adaptive boosting (AdaBoost), and category boosting (CatBoost) are tested. To isolate and quantify the crack region, this research combines image thresholding, morphological operations, and contour detection with the convex hulls method and forms a novel algorithm. Two explainable AI (XAI) tools, local interpretable model-agnostic explanations (LIMEs) and gradient-weighted class activation mapping++ (Grad-CAM++) are integrated with the proposed method to enhance result clarity. This research introduces a novel feature fusion approach that enhances crack detection accuracy and interpretability. The method demonstrates superior performance by achieving 99.93% and 99.69% accuracy on two existing datasets, outperforming state-of-the-art methods. Additionally, the development of an algorithm for isolating and quantifying crack regions represents a significant advancement in image processing for structural analysis. The proposed approach provides a robust and reliable tool for real-time crack detection and assessment in concrete structures, facilitating timely maintenance and improving structural safety. By offering detailed explanations of the model’s decisions, the research addresses the critical need for transparency in AI applications, thus increasing trust and adoption in engineering practice.
Keywords