BMC Veterinary Research (Apr 2019)
Effects of silymarin on p65 NF-κB, p38 MAPK and CYP450 in LPS-induced hoof dermal inflammatory cells of dairy cows
Abstract
Abstract Background Laminitis is considered as one of the most important causes of hoof lameness in dairy cows, which can lead to enormous economic losses. However, the etiology and pathogenesis of laminitis have not been clarified yet. Besides, it is of great significant to find alternative herbs for the prevention and treatment of dairy hooves to avoid the antibiotic abuse. In this study, the primary hoof dermal cells of dairy cows were isolated, the inflammatory model was induced by LPS, and treated with silymarin to find whether silymarin has protective effect on the inflammatory dermal cells. The viability of dermal cells, the levels of IL-1β and TNF-α, the degree of p65 NF-κB and p38 MAPK phosphorylation, the expressions of CYP3A4 and CYP1A1 were measured. Results Hoof dermal cells of dairy cows were successfully isolated and cultured by tissue adherent culture method. Certain concentrations of LPS can increase the levels of IL-1β and TNF-α, promote the phosphorylation of p65 NF-κB and p38 MAPK, and inhibit the mRNA expressions of CYP3A4 and CYP1A1. The optimal concentration for LPS to establish a hoof dermal cells inflammatory model was 10 μg/mL. Certain concentrations of silymarin can markedly decrease the secretions of IL-1β and TNF-α, inhibit the phosphorylation of p65 NF-κB and p38 MAPK, and promote the mRNA expressions of CYP3A4 and CYP1A1 in LPS-induced dermal inflammatory model. Conclusions LPS can be used for inducing the hoof dermal cells inflammatory model of dairy cows. Silymarin has protective effects on the LPS-induced inflammatory model.
Keywords