Sustainable Environment Research (Sep 2021)

Specifically designed amine functional group doped sludge biochar for inorganic and organic arsenic removal

  • Chih-Kuei Chen,
  • Nhat-Thien Nguyen,
  • Thuy-Trang Le,
  • Cong-Chinh Duong,
  • Thi-Thanh Duong

DOI
https://doi.org/10.1186/s42834-021-00103-w
Journal volume & issue
Vol. 31, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Usages of hospital sludge as a biochar adsorbent for wastewater treatment plants were investigated. Microwave carbonization was used to carbonize the sludge and then chemically activated with ZnCl2 to increase surface area and porosity. A newly designed amine functional group’s doped Sludge Biochar Carbon (SBC) presents effective inorganic arsenic (As (III)) and organic arsenic (Dimethylarsinic Acid, DMA) adsorption in water. The pore volume, pore size distribution and specific surface area were determined by performing nitrogen adsorption-desorption measurements. The Fourier Transform Infrared of the SBC was recorded to study the functional groups at room temperature. The composition of SBC was further determined by X-ray Photoelectron Spectroscopy. In order to understand the effect of amine functional complexes on arsenic adsorption, the adsorption mechanism of As (III) and DMA on SBC surfaces modified with amine functional complexes was studied using Density Functional Theory (DFT). DFT results showed that both physical and chemical adsorption of As (III) and DMA on SBC surfaces occurred. The participation of amine functional complexes greatly promoted the surface activity of SBC surface and its adsorption capacity on arsenic. The physical adsorption energies of As (III) and DMA on SBC surface with amine functional complexes were − 38.8 and − 32.4 kJ mol− 1, respectively. The chemical adsorption energies of As (III) and DMA on SBC surface with amine functional complexes were − 92.9 and − 98.5 kJ mol− 1, respectively.

Keywords