Earth, Planets and Space (Jan 2024)
A novel high accuracy finite-difference time-domain method
Abstract
Abstract The finite-difference time-domain (FDTD) method is widely used for numerical simulations of electromagnetic waves and acoustic waves. It is known, however, that the Courant condition is restricted in higher dimensions and with higher order differences in space. Although it is possible to relax the Courant condition by utilizing the third-degree difference in space, there remains a large anisotropy in the numerical dispersion at large Courant numbers. This study aims to reduce the anisotropy in the numerical dispersion and relax the Courant condition simultaneously. A new third-degree difference operator including the Laplacian is introduced to the time-development equations of FDTD(2,4) with second- and fourth-order accuracies. The present numerical simulations have demonstrated that numerical oscillations due to the anisotropic dispersion relation are reduced with the new operator. Graphical Abstract
Keywords