Energies (May 2022)

Experimental Investigation into Three-Dimensional Spatial Distribution of the Fracture-Filling Hydrate by Electrical Property of Hydrate-Bearing Sediments

  • Jinhuan Zhao,
  • Changling Liu,
  • Qiang Chen,
  • Changchun Zou,
  • Yang Liu,
  • Qingtao Bu,
  • Jiale Kang,
  • Qingguo Meng

DOI
https://doi.org/10.3390/en15103537
Journal volume & issue
Vol. 15, no. 10
p. 3537

Abstract

Read online

As a future clean energy resource, the exploration and exploitation of natural gas hydrate are favorable for solving the energy crisis and improving environmental pollution. Detecting the spatial distribution of natural gas hydrate in the reservoir is of great importance in natural gas hydrate exploration and exploitation. Fracture-filling hydrate, one of the most common types of gas hydrate, usually appears as a massive or layered accumulation below the seafloor. This paper aims to detect the spatial distribution variation of fracture-filling hydrate in sediments using the electrical property in the laboratory. Massive hydrate and layered hydrate are formed in the electrical resistivity tomography device with a cylindrical array. Based on the electrical resistivity tomography data during the hydrate formation process, the three-dimensional resistivity images of the massive hydrate and layered hydrate are established by using finite element forward, Gauss–Newton inversion, and inverse distance weighted interpolation. Massive hydrate is easier to identify than layered hydrate because of the big difference between the massive hydrate area and surrounding sediments. The diffusion of salt ions in sediments makes the boundary of massive hydrate and layered hydrate change with hydrate formation. The average resistivity values of massive hydrate (50 Ω⋅m) and layered hydrate (1.4 Ω⋅m) differ by an order of magnitude due to the difference in the morphology of the fracture. Compared with the theoretical resistivity, it is found that the resistivity change of layered hydrate is in accordance with the change tendency of the theoretical value. The formation characteristic of massive hydrate is mainly affected by the pore water distribution and pore microstructure of hydrate. The hydrate formation does not necessarily cause the increase in resistivity, but the increase of resistivity must be due to the formation of hydrate. The decrease of resistivity in fine-grains is not obvious due to the cation adsorption of clay particles. These results provide a feasible approach to characterizing the resistivity and growth characteristics of fracture-filling hydrate reservoirs and provide support for the in-situ visual detection of fracture-filling hydrate.

Keywords