Energies (Apr 2019)
Evaluation of Cyclic Gas Injection in Enhanced Recovery from Unconventional Light Oil Reservoirs: Effect of Gas Type and Fracture Spacing
Abstract
Production from ultra-low permeability shale plays requires advanced technologies such as horizontal wells with multistage hydraulic fracturing treatment. In this study, a cyclic gas injection method with two pumping schedules is introduced as an enhanced oil recovery (EOR) method. Fracture spacing and type of injection gas in a horizontal well from the Bakken formation are analyzed through numerical simulations. The economic profitability and reservoir performance are also investigated. Rate transient analysis is used to anticipate hydraulic fracture and effective fracture permeability. Different fracture spacings are selected as the major determinant factor in generating an effective reservoir contact area. Compositional simulations are conducted to model incremental oil recovery after cyclic injection of three gases (ethane, CO2, and natural gas). Economic indicators of net present value (NPV), internal rate of return (IRR) and oil recovery factor are compared to determine the best alternative among the proposed investment scenarios. Current market and a certain time-frame (2015–2035) are used to assess the investment viability of unconventional oil plays. Cyclical injection of ethane and CO2, remarkably improved oil recovery from the Bakken example. Natural gas injection however, led to inferior results and in terms of investment, may not guarantee the long-term success. Some scenarios are identified as profitable for high oil-API but do not achieve positive outcomes from lower oil specific gravities. The results from this study highlight the impact of fracture spacing in incremental oil recovery. Producing a majority of the cumulative oil during the first years makes most of the scenarios viable only for short terms. To maintain the long-term cost-effectiveness, performing cyclic gas injection through hydraulic fractures is recommended. Cycle sizes directly impact the propagation of injectant and the extent of the drainage area. Increasing the number of fracking stages can be an alternative strategy to gas injection in reservoirs with lower oil-API.
Keywords